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1.   INTRODUCTION 

Hyperspectral imaging (HSI) sensors collect spatially resolved data in hundreds of spectral channels. While 
the technology matures and finds broad applications, data downlink from the collection platform and near real-time 
processing remain key challenges, especially for near-term spaceborne sensors. It is desirable to process the data on-
board for near-real-time analysis and downlink compressed data allowing near full spectral recovery for post-
mission analysis. 

Principal component analysis (PCA) can be used to determine the reduced dimensionality and separate 
noise components in the data. While PCA is useful for image feature analysis such as smoke/cloud discrimination 
(Griffin et al., 2000), it can also be used as a data compression tool. With PCA, the majority of information in an 
HSI data cube is effectively compressed to a small number of principal components. The data volume is 
significantly reduced while the feature contrast is enhanced. Spectral information can be recovered from the 
compressed data with minimal loss. In this paper, the reconstructed data are compared to the original “truth” data 
with difference analysis using sample AVIRIS imagery. 

This methodology also allows for the HSI data to be used adaptively for various multispectral band 
simulations without the constraint of data volume and processing burden.  Based on AVIRIS data, emulation of 
MODIS sensor bands are carried out and compared with the PCA-reconstructed data. Two products are also derived 
and compared: Normalized Difference Vegetation Index (NDVI) and the integrated column water vapor (CWV) 
using the full set of AVIRIS data and the reconstructed spectral information. 

2.   PRINCIPAL COMPONENT ANALYSIS OF HSI DATA 

Principal component analysis (PCA) is generally used to de-correlate data and maximize the information 
content in a reduced number of features [Richards, 1994; Geladi,1997].  It can be applied to HSI data to reduce the 
dimensionality, aid in anomaly detection and separate scene information from noise components.   The covariance 
matrix is first estimated over the pixel spectra contained in the HSI data cube of interest.  Eigenvalues and 
Eigenvectors are then obtained for the covariance matrix Σ as given below, 

Σ = Ε {(Χ − Χm)(Χ − Χm)T} = Φ Λ ΦT , 

where Χ represents the spectral vector data; Χm, the mean spectral vector over the data cube and E, the average 
operator over the entire data cube. Φ is a matrix consisting of columns of Eigenvectors and Λ is a diagonal matrix of 
Eigenvalues. 

 Using the Eigenvector matrix Φ, the HSI data cube is then transformed into principal components, also 
called Eigenimages. The components at an image location with a spectral vector Χ is obtained as below,  

PC (X) =  ΦT Χ . 
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The components are ranked in descending order of the Eigenvalues (image variances). The Eigenimages 
associated with large Eigenvalues contain most of the image variations while the Eigenimages associated with small 
Eigenvalues are usually noise-dominated. The majority of variations in the scene are generally contained in the first 
few principal components although some anomalous image features may still be apparent in the 10th or later 
Eigenimage. Thus principal component transform allows the determination of the inherent dimensionality and 
segregation of noise components in the HSI data. With the information compression property in the leading principal 
components, the full spectral image data can be recovered from truncated sets of the principal components. The 
information content that was lost is indicated by the sum of the Eigenvalues below the level of component 
truncation. 

The PCA processing is demonstrated on an AVIRIS scene taken over Brazil during the Smoke, Clouds, 
Aerosols and Radiation - Brazil (SCAR-B) experiment in August of 1995. Figure 1 shows RGB and pseudo color 
images of the cumulus cloud scene from an AVIRIS image on 20 August 1995. Eigenvalues and sample 
Eigenvectors obtained from the data cube are plotted in Figures 2a and b, respectively.  In Figure 2a, there are 
approximately four orders of magnitude separation between the 1st and 10th Eigenvalues, which indicate the relative 
information content of the related Eigenimages. The Eigenimages can be considered as a weighted sum of the 
spectral images. The component weights over the spectral bands are represented by the Eigenvectors. Sample 
Eigenimages are shown in Figure 3. Scene features are well contrasted in the images. Clouds, water and shadows are 
the most contrasted features shown in the first Eigenimage. In the second Eigenimage, vegetation features are 
enhanced. Detailed cloud structures are seen in the 3rd Eigenimage. Burned areas are evident in the 4th Eigenimage. 

The most computation-intensive operation in PCA is projecting the spectral data into Eigenimages. It 
requires 2n FLOPs (floating point operations) per pixel per Eigenimage where n is the number of spectral bands. To 
obtain 10 Eigenimages from an AVIRIS-like image of 500x500-pixel, 200 spectral-band HSI, it takes approximately 
109 FLOPs. This is the same order of computation required for pixel-level atmospheric compensation. The basic 
computation performed in ATREM (Gao et al, 1996) requires about 15 FLOPs per pixel per band. This amounts to 
7.5x108 FLOPs to compensate the same spectral image. 

In a multispectral image, the number of data points can be expressed as, 

S L n , 

where S, L and n are numbers of samples, lines and spectral bands, respectively in the image. The number of data 
points in the compressed image and the corresponding Eigenvectors are shown below, 

(S L + n) p , 

where p is the number of principal components used. The Eigenvectors are necessary for spectral data recovery. 
Notice that number of spectral bands, n is typically much less than the number of pixels in the image, S L. The 
compression ratio is, 

S L n / (S L + n) p ~ n/p . 

Considering there are approximately 200 spectral bands in the AVIRIS data, the compression ratio using 10 PCs is 
about 20 for a typical image frame of 500x500 pixels.  

3.   SPECTRAL COMPARISON 

The spectral image data are recovered with inverse PCA using 5, 10, and 15 principal components. The 
recovered data are compared to the original data for performance evaluation. Different spectra from various features 
in the image are plotted in Figure 4. Good agreements are seen for all features between the reconstructed and 
original data, water being the exception. The reflected signal from a water surface is very low in the NIR/SWIR. 
Therefore, even small errors in the reconstruction of the spectral information are exaggerated for low reflecting 
surfaces. The reconstruction error is largest for 5 PCs and reduces considerably for 10 PCs and higher. 



 

  

Figure 1.  Color images of the AVIRIS SCAR-B data.  
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Figure 2(a). Eigenvalues of the SCAR-B HSI data. 



 

 
Figure 3.  Sample principal components of SCAR-B HSI data.  

Each component highlights various features in the scene, 
1st PC: cloud, water, shadow; 2nd PC: vegetation; 
3rd PC: cloud structure and 4th PC: burned area. 

 

Figure 2(b). Eigenvectors of the SCAR-B HSI data. 
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Figure 4.  Comparison of reconstructed and original data for sample features in the SCAR-B scene. 
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Examples of reconstructed spectral images from 10 principal components are illustrated in Figure 5. The 
differences between the reconstructed and original images are also shown. The agreements are typically within a few 
percent. Quality of image reconstruction from overall spectral coverage can also be carried out. The original 
AVIRIS spectral data as well as the reconstructed data are band-integrated to simulate 16 MODIS spectral bands. 
Two measures, spectral angle and normalized spectral distance (Euclidean distance), are used to evaluate the 
reconstructed images. These are calculated from the formulas, 

Spectral Angle (X,M) = COS-1(X · M / |X| |M|) , 
 

Normalized Spectral Distance (X,M) = |X – M| / |M| , 
 
where, M and X are the multispectral image spectra from the original and reconstructed AVIRIS data, respectively. 

A zero angle and zero distance represent a perfect match of the two spectra. The images generated from the 
original AVIRIS data are considered the “truth” data here. The reconstructed images are compared to the truth data 
in terms of spectral angle and spectral distance. The spectral distance normalized by the pixel amplitude in the truth 
image is calculated for comparison. The frame-averaged differences are listed in Table 1. It shows that, as expected, 
the more principal components (PC) used, the closer is the reconstruction to the truth data. The 10-PC reconstruction 
appears to be a reasonable one in that it is much closer to the truth in spectral angle and distance compared to 5-PC, 
but only slightly worse than the 15-PC. As illustrated in the previous section, the 10-PC compression ratio in this 
case is about 20. 

 

Table 1.  Frame Average over the SCAR-B Scene. 

p  (No.  of  PCs)  15 10 5 

(Variance Ratio)  (3 .8e-5)  (1 .4e-4)  (8 .7e-4)  

Compress ion Rat io  ~ 13 ~ 20 ~ 40 

Spectra l  Angle 
COS - 1  (  X·M /  |  X |  |  M |  )  

0 .3 o 0 .4 o 0 .7 o 

Normal ized Spectral  
Distance 

|  X -  M | /  |  M | 
0 .6% 1.0% 1.6% 

M:  Pixel spectrum in reference image 
 

X:  Pixel spectrum in reconstructed image 
 
4.   IMAGE PRODUCT COMPARISON 

Accuracy of the reconstructed image can also be evaluated based on spectral products such as vegetation 
index and column water vapor (CWV). An AVIRIS scene over Moffett Field, CA was employed for the image 
product comparison. The color images of the AVIRIS data are depicted in Figure 6 and the comparison on derived 
NDVI is illustrated in Figure 7. Except for the lake region, the 20-PC derived NDVI agreed with the truth to within 
0.01. The range of NDVI is ~0.8, the agreement is of the order of a few percent. The Eigenvalue ratio of the 20th and 
1st components of this data set is 1.9x10-4 which is comparable to the ratio of 10th and 1st components of the Brazil 
cloud scene. 

The CWV field was also computed for both sets of AVIRIS data as a by-product of the ATREM model 
application for the Moffett Field scene shown in Figure 6. The scene could be characterized as relatively dry (from 
nearby radiosonde observations) with approximately 1.27 cm of CWV. ATREM was applied to both the original 
AVIRIS image and the reconstructed image. The primary product of the model being the spectral surface-leaving 



reflectance and a secondary product, the CWV, was used for this comparison. Figure 8 displays the retrieved CWV 
from the original AVIRIS data and from reconstructed data using 5, 10, 15, and 20 PCs. From the water vapor image 
and related RGB image, it is clear that topography plays a role in the distribution of water vapor across the scene. 
Water vapor is maximum over the urban area which is in close proximity to the San Francisco Bay, and decreases 
somewhat as the terrain elevation increases (upper part of the image). It is clear from the component difference 
images that accuracy of the water vapor retrieval (as compared with the original image) improves with increasing 
PC. Both of the product comparisons shown here suggest that to keep information loss errors below 1%, requires a 
minimum of 15 PCs to be saved. 

5.   SUMMARY 

Future spaceborne HSI sensors will require onboard data volume reduction before transmission to surface 
receiving sites. Using principal component analysis (PCA) in a data compression mode, an end-to-end comparison 
was made on the accuracy of retrieving specific data products from compressed and reconstructed hyperspectral 
data. PCA was applied to HSI data to produce a set of component images. The original HSI data (at full spectral 
resolution) was reconstructed from selected sets of the component images. The reconstructed images were used in 
applications to derive the NDVI and CWV products as well as simulate multispectral channels on the MODIS 
sensor. Results of the product comparisons show that as few as 15 PCs could be used to obtain product values within 
1% of those obtained using the full complement of HSI data. 

Using adaptive channel processing, it was shown that multispectral channels could be simulated from 
reconstructed HSI data with minimal loss in image quality. The study does not deal with individual channel issues 
such as signal-to-noise which could be channel specific. In this case, the specifications of the HSI bands used in the 
simulation would determine the specific characteristics of the channel. The reconstruction of HSI data from a 
selected subset of PCs also has the effect of noise filtering, since much of the information lost due to the truncation 
of components was noise. On a similar note, the NDVI obtained from simulation of NOAA AVHRR channels using 
HSI could be improved by selectively excluding spectral bands which do not contribute to the vegetation signatures 
(i.e., water vapor absorption bands near 0.82 and 0.94 µm). 
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Figure 5.  Comparison of reconstructed and original spectral data for simulated MODIS bands. 
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Figure 6.  Color images of AVIRIS HSI data over Moffett Field. 
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Figure 7.  Comparison of NDVI derived from reconstructed and truth data over the Moffett Field scene. 
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Figure 8.  Comparison of CWV derived from reconstructed and truth data over the Moffett Field scene. 


